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mce powerful microcomputers with good graphics capa-
k3 bilities became widely available in the last decade or so,
their usefulness in explaining difficult physical concepts in
pictures has motivated the development of a great deal of
educational software. The subject of electromagnetism, for
example, is one that most students at all levels find difficult,
and much excellent software is available to help with its
exposition. 1 We describe here a computation that should be a
valuable addition to this list and also allow exploration of
basic physics not easily addressed by traditional approaches.

In introductory electrostatics courses, an important area
of study is the distribution of excess charge in material
objects. For insulators, it is fairly easy to demonstrate and to
explain that the excess charge is immobile and maintains its
initial distribution until neutralized. For conductors, in which
charge is mobile, there occurs a redistribution, the outcome
of which is not intuitively obvious. Virtually all textbooks
treat the problem in a similar fashion. 2, 3, 4 They model con-
ductors as containing an unlimited reservoir of free (dissoci-
able) charge carriers and develop the following structured
sequence of propositions:

1. In electrostatics, the electric field is zero at all points inside
a conductor (because of the reservoir of dissociable charges).
2. All points inside the conductor and on the surface are at

the same potential (because the internal field is zero).
3. The electric field at the surface of the conductor is every-

where normal to the surface (a property of equipotential surfaces).
4. All excess charge resides on the surface of the conductor

(from Gauss's law).
5. The surface charge density is greatest at sharp points.

[Establishing this effect is quite difficult. The conventional
proof involves equipotential surfaces of idealized geometries
(see "Discussion" p. 44).]
6. The electric field is strongest just outside sharp points

(again from Gauss's law).
7. The electric field is zero on the interior of a closed hollow
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conductor of any shape (from a thought experiment, removing
material from the interior).

This sequence of deductions creates a number of diffi-
culties. First, from the student's point of view, the proposi-
tions are not easily distinguished from the (relatively
unfamiliar) concepts needed to deduce them. Few introduc-
tory students are comfortable in applying Gauss's law and
equipotentials. Second, the dissociable charges in the conduc-
tor play a confusing role. They are critical for the first propo-
sition but are shown to be irrelevant in the end. The whole
argument has a "take away the number you first thought of"
feel to it. Third, the congregation of excess charge at sharp points
is quite counter-intuitive, and the standard explanations5, 6, 7

are likely to be unconvincing and only add to the confusion.
In this paper, we outline a simple computer simulation of

the charge redistribution process that demonstrates all the
behavior outlined above and that uses only Coulomb's law.

Computational approach
To avoid the confusion introduced by the presence of

dissociable charges, we use the following simplified model.
Identical point charges are imagined to be placed inside a
region of space bounded by a closed surface. These charges
are free to move anywhere within that region but cannot cross
the surface boundary and move outside it.

Qualitatively, much of the behavior of the system can
easily be predicted. The charges will move apart from one
another, and they continue to move outward until they hit the
boundary. Once there, they can only move along the surface.
All motion will cease when the net force on every particle has
no component parallel to the surface. It is a small logica' step
from there to deduce that, if the number of charges is large
enough, the total electric field at all points just outside the
surface will be directed perpendicularly outward. From that
deduction, it follows that the surface will be an equipotential.

What cannot be so easily predicted are answers to the
following two questions:
• What is the electric field at points inside the volume?
• How are the charges distributed along the surface?

To answer these questions, a quantitative analysis must
be performed.
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Clearly, for any plausible number of charges, this calcu-
lation must be done on a computer. The computation is quite
straightforward in principle and could easily be done by
students, as the only physical law is the Coulombic repulsion
between pairs of like charges. In practice, however, the writ-
ing of such a program is complicated by the need for a
graphical interface that allows the important results to be
appreciated visually. In the authors' institution, students rou-
tinely program in Pascal, using the M.U.P.P.E.T. utilities, 8

and the diagrams below are generated by a program that
makes extensive use of the graphical features of these utilities.
However, it should be stressed that the actual results of the
calculation do not depend on the particular presentation.

In writing such a program, the following points need to
be borne in mind:
1. The boundary of the volume is conveniently modeled as

a closed surface of arbitrary shape, which can be defined
either by calculation or by manually drawing it on the screen
with a mouse (see Fig. 1). It is numerically represented by a
set of point coordinates (xi , yi) spaced an appropriately small
distance apart, with the last and first point coordinates being
identical (xN, YN) =	 yi). Typically, such a surface is repre-
sented by about 100 points. For calculation purposes, the surface
is considered to be continuous and interpolated between the
points stored in the data structure representing the surface.
2. The calculation starts with a finite number of point

charges located at random positions on the interior of the
conductor (see Fig. 2). These might be placed individually
with the mouse or placed automatically by calculation.

Coulomb's law is used to calculate the force on each
charge. Because the surface is represented by a closed curve
on a two-dimensional monitor screen, the most convenient
interpretation is that both the surface and the charges extend
indefinitely in the third dimension. Thus, the field produced
by each charge has an effective 1/r dependence rather than
inverse-square. It would be possible to compute a full three-
dimensional simulation and display a cross section onscreen,
but the advantage for the purposes of the demonstration would
be minimal, and the computation would be more complex and
therefore slower.
3. When the computation is performed, each charge is dis-

placed in the direction of its force vector. It is not physically
unrealistic to make the magnitude of the displacement pro-
portional to the force (d oc F); in effect, this relationship
assumes that the charges move as in a resistive medium, with
drift velocity proportional to field strength. However, the
result does not depend on the particular transport mechanism.
Electrostatically, what matters is where the charges end up,
not how they got there.
4. If the calculated value of a charge' s displacement takes

it outside the surface, that displacement must be truncated,
and the charge is assumed to be on the surface. Further
displacement is govemed only by the tangential component
of force. A suitable test for deciding when any charge has
crossed the surface is to compare the direction of the differ-
ence vector between the charge and the narest point on the
surface with the outward normal to the surface at that point.
5. When it comes to visualizing the physical state of the

system, the direction of the force on each charge may be

Figure 1. Arbitrarily shaped boundary represents a typical staface.

Figure 2. User positions charges randomly within the surface at the start
of the computation. Short lines on the points describe the computed
directions of the electrostatic forces.

Figure 3. Charges move rapidly out to the surface.

Figure 4. Charges migrate along the surface until the force vectors are
perpendicular to it.
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Figure 5. Program lets students observe that there is no charge at surface

Figure 6. Computed equipotentials demonstrate that those near the physi-
cal surface have the same shape as and are approximately parallel to it.

Figure 7. Electric field map demonstrates approximate cancellations of
the field at interior points and its intenfification fust outside regions of
high curvature, where the charges have congregated.

represented by a short line (as in Fig. 2). At a later stage, it
might be useful to represent the magnitude of the electric field
by the length of an arrow, and it would also prove worthwhile
to write a procedure to draw lines of equipotential (as in the
later Figs. 6 and 7).

Results
When a typical computation is done, the following re-

sults are observed. As expected, the charges quickly spread
out and move to the surface with none remaining in the
interior (see Fig. 3).

They continue to migrate along the surface until the
tangential component of the net force for every charge is
zero—that is, each force vector will be locally perpendicular
to the surface, as expected (see Fig. 4).

Because any one of these mobile charges may be consid-
ered a "small test charge," the direction of its force arrow is
aligned with the electric field at that point. Therefore, the
following two basic propositions are immediately established:
• All excess charge resides on the surface.
• The electric field at the surface is everywhere perpendicu-

lar to it.
Just by inspection, the third conclusion can also be

drawn, as follows:
• There is a higher concentration of charge near regions of

smaller convex radius.
In fact, much more information can be gained than is usually

available from the textbook approach. For example, at regions
of concave curvature, the charge density is zero (see Fig. 5).

The next proposition, also expected, is that
• The surface is an equipotential.

A simple calculation of the potential at any point on the
screen is not difficult, and a plot of equipotential surfaces can
be drawn (see Fig. 6). The result conclusively demonstrates
that the near-Iying equipotentials are indeed closely parallel
to the surface and become more and more so as the number
of mobile charges is allowed to increase.

It is also straightforward to calculate the electric field
strength and produce a map at a grid of points throughout the
entire region (see Fig. 7). Two features are apparent from such
a map. First, the external field strength is greatest immediately
outside the surface regions of small convex radius. This
feature is only to be expected, because the surface charge
density is greatest in such regions, as also is the gradient of
the potential. Second, and somewhat surprisingly, the electric
field at all points on the interior of the volume is very small.
The cancellation of the interior field becomes more and more
pronounced as the number of mobile charges increases.

Discussion
The results we have reported here are not new. What is

new is the way in which they are demonstrated. The approach is
intrinsically easy for students to understand, because it assumes
only Coulomb's law. Furthermore, the simulation demon-
strates features of charge redistribution that are quite counter-
intuitive and otherwise only accessible by subtle argument. It
also raises insightful questions about fundamental physics.

One such question is why charges tend to collect at sharp
points. This phenomenon is easy to demonstrate experimen-
tally but is difficult to explain. Many textbooks follow the
discussion used by Feynman, 5 which shows the charge den-
sity to be greater on the smaller of two spheres j oined by a
long wire. Other derivations6, 7 use less-artificial idealizations
of a conductor but much more opaque mathematics. All these
approaches rely on the equipotential property of the conduct-
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ing surface to explain charge accumulation. Unfortunately, in
introductory physics courses, students are seldom sufficiently
comfortable with the concept of potential to regard such
explanations as credible in the face of the counterintuitive
nature of the result.

The computational approach, on the other hand, relies
only on simple physical principles—the Coulomb repulsion
between mobile charge carriers. Note especially that the
equipotential nature of the surface is not a precondition of the
computation but one of its outcomes. Furthermore, the charge
density can be quantitatively determined for any surface and not
just for special cases. We believe this approach offers a striking
exposition of a difficult physical concept and can be used as a
springboard for the development of more advanced concepts.

A second question raised is the more fundamental one of
why the electric field is zero in the interior of the surface. All
elementary textbooks, without exception, use the model of a
conductor that contains an unlimited reservoir of positive and
negative charge (so that any nonzero field will cause currents
to flow). However, the argument is then extended to cover the
case in which the conductor is hollow, and cavities obviously
do not provide any such reservoir.

The computational approach outlined here predicts field
cancellation on the interior of the modeled surface, assuming
only that charge carriers can move freely through it. The
assumption that the material itself can contribute dissociable
charges appears not to be necessary; Coulomb's Law is
sufficient. It is instructive and straightforward to replace the
force between charges by a non-Coulombic law. When this is
done, if this force falls off more quickly or more slowly than
r-2 , the field in the interior does not vanish (clearly violating
Gauss's law). In the former case, the charge density in the
interior is not necessarily zero either.

Although the simulation demonstrates important out-
comes of charge redistribution processes, it has some limita-
tions. First, the number of charges represented is very much
smaller than one would expect to find in any real situation, and
thus the interior field cancellation is never exact. However, the
result is certainly clear enough for students to infer the princi-
ple. They can readily observe that the field reduction becomes
much more marked as they increase the number of charges.
Second, the model can account for spontaneous charge redis-
tribution but not for the induction of charge of opposite sign
in the presence of external fields. The model could certainly
be extended to include dissociable charges, but only at con-
siderable computational load. Even so, we have a surprisingly
sophisticated demonstration of electrostatic behavior.

Lastly, we believe that this work bears on another impor-
tant issue. There has been much discussion since the invention
of computers about the role of computation in physics—that
is, is a computer simulation an experiment or a piece of
theory? Haile 9 eloquently argues that "the role of simulation
is not so much to predict (observation) but to make explicit
how input and output variables are connected."

The current computation might be considered a thought
experiment, in which the input assumption (Coulombic repul-
sion of like charges) is demonstrably connected to the output
conclusion (the field is zero in the interior and strongest at
sharp points on the surface). We believe that this example,

and others like it, might contribute to the clarification of the
role of computer simulations in physics.
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